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Abshact We present theoretid calculations for the temperature dependence of both the static 
and the dynamic Srmcture of liquid lithium. Our approach is based on the neutral pseudoatom 
method to obtain the screening valence electron density around a Li' ion as well as the effective 
interatomic pair potential, and on the variational modified hypernetted chnin integral equation 
theory of liquids to obtain the liquid static structure. Then, the dynamic structure is calculated 
in the viscoelastic approximation. This combination results in a whole t h e w  free of adjustable 
parameters. The results obtained show rather good agreement with the available simularion and 
experimental d m  

1. Introduction 

Among the metallic systems, lithium has the simplest electronic structure, two s core 
electrons and one valence electron, which is not matched by a similar simplicity in the 
understanding of its properties. Even among the alkali metals, lithium shows rather peculiar 
behaviour, such as being virtually immiscible with all other alkali metals, which, in turn, 
are miscible between themselves (Potter and Rand 1985). and it also poses very specific 
problems for the experimental determination of its liquid strtlcture (Albas 1983, Rupperberg 
and Reiter 1982, Ruppersberg et al 1980, Visser et al 1980, Olbrich er al 1983). In fact, 
some differences appear between the static structure factors of liquid lithium depending 
on whether they have been obtained by x-ray or neutron diffraction experiments. In x-ray 
experiments the analysis of the data is less certain than for other metals, because the effects 
of delocalization of the conduction electrons are rather large. The analysis of the x-ray data 
requires the atomic form factor (which is the Fourier transform of the electronic density), 
and although the usual procedure has been to use the electronic density corresponding to 
the free atom, this may not be correct for metallic lithium, since one out of three electrons 
is delocalized. Moreover, the inelastic (Compton) scattering is rather substantial for lithium 
(as compared with the other alkali metals), and the theoretical calculations of the Compton 
scattering also suffer from inadequate knowledge of the implications of the delocalization 
effects. On the other hand, for neutron diffraction experiments, the Placzek correction is 
larger than usual because of the small atomic mass of the lithium nucleus, and it is not yet 
clear whether the usual corrections are adequate. 

On the theoretical side, the understanding of the properties of simple metals, that is 
(s, p)-bonded metals, has usually been closely linked to the idea of a pseudopotential. 
Within the alkali group, it is expected that the pseudopotential for Li be quite different in 
comparison with the other alkali metals. Li has only two s electrons in the core and the p 
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valence electrons feel the full electron-ion potential, whereas for the other alkalis both the 
s and p components are expected to be weak. Hence the pseudopotential of Li should be 
stronger and more non-local than the pseudopotential for the other alkalis. 

Although a first-principles pseudopotential is a very complicated non-local and energy- 
dependent operator, it has been shown (Hafner and Heine 1983) that a qualitative 
understanding of the main structural trends in solid and liquid simple metals can be achieved 
even by using the simplest local pseudopotential. that is, Ashcroft’s empty-core model 
potential (Ashcroft 1966). 

Several local and non-local pseudopotentials have been proposed for lithium (Ashcroft 
1966, Dagens et a1 1975, Hoshino and Young 1986, Li et a1 1987, Chihara 1989, Das and 
Joarder 1990, Jank and Hafner 1990, Walker and Taylor 1990). We have recently carried out 
a study on the characteristics of some of these pseudopotentials by computing their predicted 
structural and thermodynamic properties for liquid lithium in several thermodynamic states 
(Condlez eta1 1993a). In that study we have also proposed a new local pseudopotential that 
incorporates some important electronic properties, namely, the screening valence electronic 
density, as computed from first principles. Recently, the dynamic stlllcture of liquid lithium 
has been studied by inelastic neutron scattering experiments (de Jong et al 1992, 1993, 
Verkerk et a1 1992, de Jong 1993) and by molecular dynamics simulations (Canales et a1 
1993). 

The purpose of this paper is lo extend the previous work (GonzBlez et al 1993a) to 
study theoretically the static structure, that is, ion-ion and electron-ion correlations, as 
well as the dynamic structure of liquid lithium at several temperatures. This is carried out 
by using a recently developed very accurate integral equation of liquids, the variational 
modified hypemetted chain (VMHNC) equation (Rosenfeld 1986), and an effective interionic 
pairwise additive interaction obtained from the neutral pseudoatom (NPA) method (Dagens 
1972, 1973, 1975, Conzilez et a1 1993b). Therefrom, the dynamical structure is obtained 
on the basis of the viscoelastic approximation. The ensuing combination results in a body 
of theory free of adjustable parameters. The theoretical results are discussed in comparison 
with the results of the experiment as well as the simulation. 

D J Gonx5lez et a1 

2. Theory 

2.1. Effective interionic potentinls: the neutral pseudoatom model 

A liquid metal can be regarded as a conduction electron gas of mean number density n, 
moving through an assembly of ions, with charge Z, and mean ionic density p = n./Z,, 
whose configuration is random in space and time. Moreover, the ions attract the valence 
electrons, which pile up around them, thus screening the ionic potential and leading to an 
effective interaction between the ions. 

In  this section we briefly describe the method for obtaining the interatomic pair 
potentials. For further details we refer the reader to the literature (Perrot 1990, Perrot 
and March 1990, Gonzfiez e t o l  1993b). 

The computation of the effective interatomic potential incorporates two distinct steps: 
first, the valence electron density displaced by an ion embedded in a homogeneous electron 
gas is calculated by using the NPA model: and secondly, we construct an effective local 
pseudopotential, which, within linear response theory (LFT), reproduces the same displaced 
density as obtained in the first step. Finally, the effective interatomic potential is obtained 
from the pseudopotential. 
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Within the NPA model, it Is assumed that the total electron density, pe(r) ,  of the metal 
can be decomposed as a sum of localized electronic densities, n(r) ,  that follow the ions in 
their movement, 

P d T )  = ~ ~ ( l ~ - R i l ) = ~ ~ ~ ( l ~ - R i l ) + ~ n " ( l r - K I )  (2.1) 
i i 

where I& denotes the ionic positions, nc(r) is the core electronic density and nV(r)  is the 
valence electronic density, whose computation is the main aim of the NPA. This is carried 
out by decomposing the valence electronic density, n&), into two contributions n:(r) and 
n:(r). namely n,(r) = n:(r)+nr(r).  The first contribution arises when an ion is introduced 
into a jellium in which a cavity has been made, so n:(r) represents the valence electronic 
density displaced by the external potential 

(2.2) 
where * denotes the convolution operation, stands for the ionic potential and u(r) is a 
cavity screening function introduced in order to make V&.(r) as weak as possible. The total 
charge of u ( r )  is equal to Z,, the valence of the ions. so it will compensate the behaviour 
of Vjoo(r) for large distances. On the other hand, for small distances Vioa(r) diverges as 
-ZaI / r ,  where Z, is the atomic number of the ions, so y & ( r )  will not be weak. Moreover, 
the contribution of the core electrons to V&(r) is influenced by the presence of the valence 
electrons. so V,&(r) and n:(r) must be evaluated self-consistently. This has been done 
through the density-functional theory (DFT), by solving the KohnSham equations for all 
the electrons (core and valence electrons), where the electronic exchange and correlation 
effects have been taken into account in the local-density approximation (LDA) by using the 
expression of Vosko et al (1980). 

The second contribution to the valence electronic density, namely n:(r), represents the 
electronic density that screens in LRT the charge distribution given by the cavity screening 
function u(r),  that is 

i ; ( q )  = - ( 4 r / q Z ) x ( q ) W  (2.3) 
where the tilde denotes the Fourier transform and x ( q )  is the density response function, in 
which the electronic exchange and correlation effects have been included through the LDA 
local-field correction, so as to be consistent with the approximations made in the previous 
step. For more details about the use of the LRT and the optimum shape of the cavity, we 
refer the reader to Dagens (1972), Perrot (1990) and Gonz6lez eta! (1993b). and we only 
mention that for the present calculations we have used a spherical cavity with radius given 
by the WignerSeitz radius RWS. 

Now, we turn to the calculation of a local pseudopotential, ijps(q), which within 
LRT reproduces the non-linear screening charge determined by the NPA method, namely 
nv(r) .  This is achieved by first pseudizing n&) so as to eliminate the core orthogonality 
oscillations, leading to a displaced valence electronic pseudo-density, nps(r ) ,  from which a 
pseudopotential is obtained by 

W q )  = x(q)~pPs(q). (2.4) 
Finally, standard second-order pseudopotential perturbation theory leads to an effective 

vi&@) = KO&) + [ ( l / r )  * v(r)l 

interatomic pair potential, @ ( r ) ,  given by 

where the Fourier bansform of &&) is given by 
@ ( r )  = z:/r +@in&) (2.5) 

Jind(4) x(q)IZps(q)Iz. (2.6) 
This completes the specification of the NPA method as we have applied it to compute 

the interatomic pair potentials of liquid lithium in different thermodynamic states. 
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2.2. Liquid static theory: the variational modified hypernetted chin  approximation 

The calculation of the static structural functions of the liquid system has been carried out by 
using the variational modified hypernetted chain (WC) approximation, which is briefly 
described below. For further details see Rosenfeld (1986) and G o d e z  et a1 (1992). 

The starting point of most integral equation theories of liquids is the Omstein-Zernike 
equation, which for a homogeneous, isotropic system can be written as 

D J Gonzdlez et a1 

h(r)  = c(r)  + p 1 c(lT - r'l)h(r') dT' (2.7) 

which defines the direct correlation function, c(r) ,  in tenns of the total correlation function, 
h(r)  = g(r)  - 1, where g(r) is the pair distribution function. This relation is supplemented 
by the exact closure relation 

c(r)  = W )  - I n M r )  exp[PW) + B0)1) (2.8) 

where $(r )  is the interatomic pair potential, ,3 = ( ~ B T ) - '  is the inverse temperature and 
B(r) denotes the bridge function, for which some approximation must he made. Following 
the universality assumption of the bridge function (Rosenfeld and Ashcroft 1979), we have 
chosen that obtained within the Perms-Yevick (PY) approximation for the hard-spheres (HS) 
system with a packing fraction q. that is, B(r)  = Bpy(r. 7). This function depends only on 
the single parameter q and the procedure to determine it has led to different-though closely 
interwoven-approaches. The VMHNC criterion to determine this parameter, as a function 
of the thermodynamic state, is to minimize. a viriaVenergy thermodynamically consistent 
local Helmholtz free-energy functional fmHNC(@; p .  q )  with respect to variations in q. 
The variational condition 

(2.9) afvMHNc ( A  P .  w q  = o 

determines q = q(p, p). In the above equation 

MHNC fmHNCW P. V )  = f (@, p .  11) - A&) (2.10) 

where fMHNC(@. p .  q)  stands for the MHNC free-energy functional (Rosenfeld 1986) and 
A+(?) is given by 

(2.11) 

Here the term S+(q) is a fitting function, which for reasons discussed elsewhere (Rosenfeld 
1986, Gonz6lez et a1 1992) is chosen as 

Wrl) = fcs(v) - fPYV(V)  (2.12) 

,where fpyv(q) and fcs(q) denote the Percus-Yevick virial and the CarnahanStarling fiee 
energies for the hard-sphere system (Young 1987). respectively. The procedure to obtain 
the structure of the system is to minimize fVMHNC(,3, p .  q )  with respect to variations in q;  
the optimized value of q is used to evaluate the HS-PY bridge functions, substitute these in 
equation (2.8) and solve this equation coupled with equation (2.7) to find the static ion-ion 
correlation functions. 
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2.3. Electron-ion correlation functions 

The correlation between valence electrons and ions can be described by the electron-ion 
structure factor &(q) and its Fourier transform, the electron-ion pair distribution function 
g&). which, within the linear response approximation, are simply obtained as (Chihara 
1987) 

and 

(2.13) 

(2.14) 

Here E&) stands for the Fourier transform of the screening valence electronic density, 
nv(r),  and S(4)  represents the ion-ion static structure factor. 

3. Results 

The present formalism has been applied to study the static and dynamic structural 
characteristics of liquid lithium at three different temperatures for which experimental 
neutron scattering results are available (Olbrich et a1 1983). Table 1 summarizes the 
thermodynamic states, namely temperatures and ionic number densities, for which the 
present calculations have been carried out. 

Table 1. Thermodynamic states sludied in this work. 

T (K) 470 595 725 
p (A-') 0.0445 0.043 0.042 

3.1. Screening valence electron density and effective interdomic potentials 

The first step in our study concems the calculation of the electronic 1s core states of a 
Li+ ion as well as its self-consistent screening valence electronic density nv(r) ,  which are 
computed as pointed out in section 2.1. As is shown in figure 1, the screening valence 
electronic density shows an oscillatory behaviour; the small oscillation in the core region is 
due to n:(r) and it is related to the orthogonality condition between the valence and the core 
electronic wavefunctions, whereas the greater oscillation in the core region is due to n:(r). 
The oscillations of nv(r) at large values of r are the well known Friedel oscillations, and 
their behaviour is also mainly determined by d,(r) .  This can be appreciated in the inset of 
figure 1, which shows, for T = 470 K, the screening valence electronic density n,(r) along 
with its two components, nt ( r )  and nC(r). Also, in figure 1 we have plotted the screening 
valence electronic densities for two temperatures and, for comparison, we have also included 
the 2s-electron density distribution of a free Li atom, na(r ) .  It is observed that an increase 
of temperature leads to a further spreading out of the screening valence electronic densities. 
Also, it is worth noting that the liquid metal screening valence electronic densities are 
similar to the atomic 2s-electron density distribution, although the atomic one is less spread 
out and does not show oscillations for large r values. On the other hand, the computed 
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r (o.u.) 

Figure 1. Total screening valence electronic density, r2nv( r ) ,  for Li at T = 470 K (full curve) 
and 7‘ = 725 K (broken m e ) .  The dotted curve represents the Zsclectron density in a free 
Li atom and the asterisks show the total screening valence electronic density obtained for Li 
at T = 470 K by using the Ashcroft model potential. The inset shows, for T = 410 K, a 
comparison between r2n,(r) (full curve) and its two components. r2n;(r) (shon broken curve) 
and r2nt(r )  (long broken curve). 
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5 
2 L 2.0 
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Figure Z Interatomic paif potentials for Li at T = 470 K full curve. NPA result; broken curve, 
OPW result of lank and Hafner (1990); clwin curve. QHNC result of Chihara (1989): dotted curve, 
result obtained by using Ashcroft’s empty-core model potential (Condez et a/ 1993a). 

electronic density distribution corresponding to the Is core electrons is practically the same 
as that of the 1s electrons in the free atom. 

Now, from the previously obtained screening valence electronic densities, the effective 
interatomic pair potentials are easily derived according to the prescription outlined in 
section 2.1. It should be mentioned that by applying equation (2.4) we are generating 
an effective local pseudopotential; this has  been made in order to avoid the introduction of 
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adjustable parameters while at the same time preserving the full information contained in 
our calculated screening valence electronic density. In this way a pseudopotential in the 
linear response regime is built up so as to generate a non-linear screening charge determined 
by the NPA method. 

Several local and non-local pseudopotentials have already been proposed for lithium 
(Ashcroft 1966, Dagens et a1 1975. Hoshino and Young 1986, Li et a1 1987, Chihara 
1989, Das and Joarder 1990, Jank and Hafner 1990, Walker and Taylor 1990) and in 
a previous work (Gonztilez et a1 1993a) we have studied some of them by comparing 
their predicted structural and thermodynamic properties; now in the present work we will 
concentrate on three of them that have a parameter-free character. First, we should mention 
the non-local Heine-Abarenkov type pseudopotential of Dagens et al (1975), which was 
obtained by a very similar NPA type calculation, although these authors did not take into 
account the electronic correlation and their Vio&) (see equation (2.2)) was taken from 
the free ion instead of the self-consistent one obtained in the present calculation. Another 
non-local pseudopotential, based on an orthogonalized plane-wave (OPW expansion of the 
conduction band states and the LDA for the electronic exchange and correlation, has been 
proposed by Jank and Hafner (1990). Also, Chihara (1989) has obtained an effective 
local pseudopotential for lithium, on the basis of the DFT in the quantal hypernetted chain 
approximation (QHNC), where the liquid metal is modelled as a mixture of nuclei and 
electrons. 

The interatomic pair potentials derived from those different pseudopotentials are shown, 
for T = 470 K, in figure 2. They are rather similar in the repulsive part, the main differences 
being located in the region of the first attractive minimum where the QHNC-derived pair 
potential shows a wider and deeper first attractive minimum. The present NPA-derived 
pair potential stands between both QHNC- and opw-derived pair potentials and also shows 
stronger Friedel oscillations. 

Nevertheless, besides those differences, the three interatomic pair potentials share the 
common property of leading to a rather strong interaction with rather similar values for the 
position of the first attractive minimum. This can be better appreciated by comparing them 
with the pair potential obtained by using Ashcroft's simple empty-core pseudopotential 
(Ashcroft 1966) with a core radius, r,, fitted to match the first peak position of the 
experimental static structure factor (re = 1.44 au). 

3.2. Static correlation functions 

From the previously computed effective interatomic pair potentials, the corresponding 
various static correlation functions have been obtained according to the formalism outlined 
in sections 2.2 and 2.3. First, the static ion-ion structure factor, S ( q ) .  of liquid lithium at 
three different temperatures has been computed by using the VMHNC theory, which we have 
already shown to be a very reliable theory of liquids (Gonzalez et al 1991, 1992), and the 
results are shown in figure 3. Comparison with the experimental neutron scattering results 
of Olbrich et al (1983) shows, for the three thermodynamic states considered in this work, 
an overall excellent agreement for both the phase and amplitude of the oscillations; the only 
exception is the first peak height, where our theoretical results predict a 5% lower value. 
This is rather remarkable as our theoretical calculations do not resort to any adjustable 
parameter. The comparison is shown in figure 3 where, for the sake of clarity, we have 
only plotted the experimental results at T = 470 K. 

Good agreement has also been obtained by Chihara (1989) within the QHNC-derived 
interatomic pair potential, although his theoretical result predicts a smaller amplitude for 
the second peak of S(q) .  In his calculation, the bridge function was approximated by 
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3.0 

q (a&-') 

Figure 3. Static swam factor S(q) for Li at T = 
470 K (€uU curve), T = 595 K (long broken curve) and 
T = 725 K (short broken m e )  as obtained from the 
NPA pair potentials. The open circles are the neutmn 
diffraction data of Olbrich era1 (1983) for T = 470 R 

Figure 4. X-ray scattering form factor of liquid lithium 
at T = 470 K. The full curve is the result from the NPA 
screening valence electron density, the broken curve 
is from the atomic 2s electron density and the chain 
"e is the theoretical result of Visser et 01 (1980). 
In lhe figwe (RHS scale) we have also represented the 
rafio between the total (including the mre electrons) WA 

form faclor ( j h ( q ) )  and the atoll& one (fimM(q)). 

the PY-HS bridge function, Bpy(r ,  q), with the parameter q chosen so as to match the 
experimental value of S(q = 0). Also, good agreement was obtained by Jank and Hafner 
(1990) by performing a molecular dynamics simulation with their opw-derived interatomic 
pair potentials, although the oscillations of their theoretical S(q) are slightly out of phase 
in comparison with the experimental one. 

For liquid lithium at T = 470 K, there are also experimental x-ray scattering results, 
S x ( q ) ,  by Waseda (1980), that show some important discrepancies with the neutron 
scattering results, SN(q), of Olbrich er ai (1983): (i) within the range I .2 A-' < q < 2.0 A-' 
there are some appreciable differences, with SN(q) being smaller than Sx(q) ;  (ii) the main 
peak of S N ( ~ )  is higher by about 10%. and (ii) for bigger q values there appears a systematic 
shift in the oscillations. In fact, some of these discrepancies may be explained in terms of 
the form factor used to reduce the raw data obtained from an x-ray scattering experimenf 
where the usual procedure is to resort to the atomic form factor. Figure 4 shows the 
ratio between the form factor obtained from the present NPA calculations, fNpA(q), and that 
found by using the atomic electron density, fAMM(4). It is found that, up to q 2.1 A-', 

so as to bring it closer to SN(4). On the other hand, in the region around the main peak 

reduce the discrepancy with SN(q). 

Now. by applying equalions (2.13) and (2.14). the electron-ion correlation functions are 
easily obtained. First, in figure 4 we have plotted the Fourier transform of the screening 
valence electron density, E&), which appears in equation (2.13) as obtained for T = 470 K, 
and in figure 5 we show the elecfxon-ion smcture factors, &(q), associated with the 
three thermodynamic states considered in this work. From this figure several interesting 
features of Se&) must be mentioned: (i) they arc positive in the long-wavelength region 
where the temperature dependence is more strongly reflected; (ii) they show a dip at the 

fNPA(4) > fATOM(4). and therefore the USe Of fNpA(4) would reduce the Value Of &(q) 

position Of S(q), q N 2.5 A-', fNPA(q) < fAmM(4). which now would enhance Sx(q)  and 
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position of the main peak of the ion-ion structure factor, and its magnitude decreases with 
increasing temperature; and (iii) after the first dip, &(a) quickly becomes positive again 
and decays smoothly to zero. All these features are in qualitative agreement with the 
experimental results obtained by Takeda et d (1986, 1989) for other metallic systems, and 
our theoretical results for &(q) also show that its temperature dependence is mainly driven 
by the temperature dependence of the ion-ion structure factor. 

0.10 

0.05 

;; 0.00 

v; 
v 

-0.05 

0.0 - 
1 5 0.0 1.0 r,r* 2.0 0 1 2 3 

q (a.u.-l) 
Flgure 5. Electron-ion static structure facton Sti(q) 
for Li at T = 470 K (full curve). T = 595 K (long 
broken c w e )  and T = 725 K (short broken curve). 

Figure 6. Electron-ion pair distribution functions g.,(r) 
for Li at T = 470 K (full m e )  and T = 725 K 
(broken curve) as obtained f” the total screening 
valence electron density. The dotted curve shows, for 
T = 470 K, the p.i(r) obtained by using the pseudo- 
density, n&). 

Figure 6 shows the calculated electron-ion pair distribution functions, g&), for two 
temperatures, and the following characteristic features can be appreciated (i) there is a dip 
at a distance of about 0.85 au, which appears as a consequence of the orthogonality condition 
between the valence and the 1s core wavefunctions; (ii) its oscillatory behaviour is rather 
weak, with a broad first maximum followed by broad and strongly damped oscillations; 
and (iii) its temperature dependence is also rather we& as compared with the behaviour 
of the ion-ion pair distribution function. In this figure we have also included the g&) 
obtained by using in equation (2.13) the screening electronic valence pseudodensity, f ip(q) .  
It shows that, by sweeping away the core orthogonality oscillations of the screening valence 
electronic density, as is done in a typical pseudopotential calculation, the structure of the 
g,i(r) inside the core region is also swept away and, just outside the core region, a realistic 
description of the g i ( r )  can be obtained. 

3.3. Dyruunic structure 

From the previously obtained interatomic pair potential 4 ( r )  and the pair distribution 
function g(r ) ,  we can obtain the frequency N ( q )  defined as 
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and m stands for the ionic mass. In fact, these frequencies are related to the second and 
fourth frequency moments of the dynamic structure factor, S(q, o), as 

D J Gonzblez et a! 

CO W 

w4S(q, w )  d o  = oi(q)ot(q). (3.3) 

Now, the dynamic sbucture factor has been calculated within the framework of a simple 
viscoelastic model in which the second-order memory function of the intermediate scattering 
function is assumed to decay exponentially with a relaxation time s(q).  This assumption 
leads to an S(q, o) given by (Hansen and McDonald 1986) 

L 0 2 S ( q ,  o) dw = oi(q) L 

and for the decay rate l/t(q) we have taken the simple expression (Lovesey 1971) 

(3.5) 

which leads to the correct ideal-gas value of S(q, o) for large q and small o values. In 
fact, this approximate scheme has also been successfully applied to study the temperature 
dependence of the dynamical structure of liquid rubidium (Hoshino et al 1992). 

The dynamics of liquid lithium has been studied experimentally by inelastic neutron 
scattering (de Jong et al 1992, 1993, Verkerk et al 1992, de Jong 1993) and by inelastic 
x-ray scattering (Burkel 1991). In fact, de Jong et al measured the total dynamic structure 
factor of liquid lithium at T = 470,526 and 574 K; the data obtained suggest the existence of 
collective modes (sound modes) from about 0.64qp (where qp denotes the main peak position 
of S(q), qp 2.5 A-’), since the experimental set-up did not allow the observation of 
collective modes for smaller q-values. On the other hand, the experimental results obtained 
by Burkel (1991) at T = 600 K also point to the existence of collective modes within the 
ranges O.lZqp < q < 0.8qp and < q < 1.45qp. 

In figure 7 we show the theoretical S(q, o) obtained for several q-values, along with the 
corresponding molecular dynamics (MD) results obtained by Canales er al (1993) using also 
the present NPA-derived interatomic pair potential. It is observed that the calculated S(q, o) 
show well defined peaks for small q-values (q < 1.8 A-’), whereas for larger q-values there 
are no maxima and the values of S(q, o) increase up to q = 2.5 .&-I, which corresponds to 
the main peak position of the static structure factor, qp. As shown in figure 7, these trends 
are in complete agreement with the MD results (Canales er a/ 1993). In fact, except for 
q-values smaller than qp, a fair agreement is obtained between the present theoretical and 
the corresponding MD results. This is rather remarkable considering the simplicity of the 
approximation employed here. A better description of S(q, o) would require more elaborate 
approximations, such as the self-consistent scheme, to obtain the memory function (Bosse 
et al 1978, Sjogren 1980). 

We note that in the MD simulations of Canales eta1 (1993) a window function was used 
so as to remove the cut-off noise in the Fourier transform of the intermediate scattering 
function, F ( q ,  t ) .  It is well known that this procedure introduces some broadening and 
lowering of the peaks and, in order to quantify this effect and also to make a more meaningful 
comparison with the MLI results, we have also studied the changes induced in ow theoretical 
results by applying the same window function to the theoretical F ( q ,  t ) .  The new obtained 
results for S(q, o) show, in general, rather small differences with the previous ones, which 
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Figure 7. Dynamic smcture factors S(q. 0)  for different q-values. The full and broken curves 
show the present theoretical results for T = 470 and 725 K, respectively, and the full circles 
are thf molecular dynamics results of Canales et nf (1993). The dotted curve, for q = 0.72 and 
1.76 A-', denotes the S ( q . 0 )  obtained by applying the same window function as used in the 
MD simulations (Canales er of 1993). 

are hardly noticeable within the scale of figure 7. Nevertheless, for q = 0.72 and 1.76 A-' 
a small but appreciable lowering of the peak occurs, and for these cases we have also 
included in figure 7 the new dynamic structure factor. 

Now, the longitudinal current density correlation function, CI(q,o)  = wzS(q,o), is 
easily obtained. This function shows for all q-values and o > 0 a clear maximum, and the 
frequencies of the maxima for the different q-curves lead to the (longitudinal) dispersion 
relation (o;D(q)). Within the viscoelastic approximation, oo(q)/J[S(q)]  and o L ( q )  give the 
lower and upper bounds of the dispersion relation, i.e. w(q)/,/[S(q)] c op(q) c "(4). 
and in figure 8 we have plotted these frequencies for liquid Li at 2' = 470 and 725 K along 
with the corresponding MD results (Canales et al 1993). The agreement of the theoretical 
o;O(q) with the MD result at T = 470 K is reasonably good. 

By comparing the result for T = 470 K with that for T = 725 K we can observe the 
characteristic features of the temperature dependence of the dispersion curve. That is, as 
the temperature increases: (i) the dispersion curve does not appreciably change for q-values 
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Figure 8. Calculated dispersion curves @(9) (broken curve), m(q) (full curve) and 
l y l (q) /J[S(q) ]  (dotted curve) for (a) = 470 K and (b) T = 725 K. The full circles represent 
the q"(q) values obtained from MD simulation (Canales et d 1993). 

in the range q e 1.5 A-' (which is the position of the first peak of qm(q)); (ii) the first 
minimum at q N 2.5 A-' (which corresponds to the position of the first peak of S ( q ) )  
becomes shallower, and this is mainly due to the temperature dependence of S ( q )  (see 
figure 3); and (iii) o?(q) increases with temperature for q > 2.5 A-l. These characteristic 
features of the temperature dependence of o;O(q) have also been obtained theoretically for 
expanded liquid rubidium (Hoshino etal 1992) and are consistent with both the experimental 
(Pilgrim et al 1991) and the MD simulation (Kahl et a! 1993) results for liquid rubidium. 

As previously stated, the present theoretical S(q ,w)  do show maxima only for q- 
values smaller than 1.8 A-'. These maxima, denoted by m(q), show for small q a 
rather linear behaviour, leading to a theoretical value of the adiabatic velocity of sound 
of cg N 4700 m s-'. This value is slightly higher than the corresponding experimental 
value of 4550 m s-'. A similar agreement has recently been obtained for liquid Na at 
T = 380 K by MLI simulations (Shimojo et a! 1993). 

The viscoelastic expression for the dynamic stmcture factor S(q, o) can, alternatively, 
be written as 

S(q ,o )=[S(q ) fn lRe~(q , z  = io )  (3.6) 

where F(q, z = io) is a sum of three complex Lorentzian functions 

(3.7) 

with Ao(q)  and zo(q) W i g  real functions whereas A+(q)  and z+(q) are either real 
or complex conjugate. The parameters zo(q) and z*(q) satisfy the following equations 
(Lovesey 1984) 

where we have dropped the argument q and 7 has already been defined in equation (3.4). 
This set of equations is easily reduced to a third-degree polynomial whose (real and 
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complex) solutions are readily obtained. The parameterz&) represents the halfwidth at half 
maximum (HWHM) of the Rayleigh peak of S(q, w),  whereas Re[z&)] represent the HWHM 
of the Brillouin peaks of S(q,  w )  that are centred at w = Im[zi(q)]. This alternative form 
'of S(q,  0) enables a closer comparison with the recent analysis of experimental inelastic 
neutron scattering data (de Jong et al 1993, de Jong 1993). In that study, the total dynamic 
strzlcNre factor was decomposed into its self and collective parts by using models for 
S&, w )  and S(q, w )  respectively. The Nelkin-Ghatak model (Lefevre et al 1972) was 
used for S,(q,  w), whereas for S ( q .  w )  a sum of three Lorentzian functions (equation (3.7)) 
was employed. The whole fitting procedure involved several free parameters and the results 
obtained (which we have included in figures 9 and 10) show rather large error bars, which 
are due to the different results obtained by using different initial guesses for those fitting 
parameters. Nevertheless, as pointed out by de Jong (1993), the analysis of the obtained 
data for T = 526 and 574 K suggests the existence of collective modes around qp and 
beyond; on the other hand, the corresponding data for T = 470 K are rather inconclusive 
as for the appearance of a sound propagation gap around qp. 

By using our theoretical results for w&) and S(q) we have solved equations (3.8) 
and the results obtained are shown in figures 9 and 10. First, in figure 9 we show 
a comparison between the theoretical and experimental results for z&), Re[z*(q)J and 
Im[z+(q)] corresponding to T = 470 K, whereas in figure 10 a similar comparison is 
carried out although now the theoretical results are for T = 595 K and the experimental 
ones are for T = 575 K. Note that figures 9(c) and lO(c) represent the dispersion relation of 
the collective modes. Although the experimental error bars are rather large, the wavenumber 
dependence of these magnitudes is qualitatively well described by the simple viscoelastic 
theory. 

4. Summary 

In this paper we have investigated the static and dynamic structure of liquid lithium in three 
different thermodynamic states. The present theoretical approach, which is parameter-free, 
is based on an effective interatomic pair potential derived from the neutral pseudoatom 
approach, on the variational modified hypernetted chain approximation to obtain the static 
StruCNTe and on the viscoelastic theory to obtain the dynamic structure. For the static 
ShUcNre, the good agreement found between theoretical and experimental results gives 
further coincidence in the present NPA-derived interatomic pair potential. In fact. in 
a previous work (Gonzaez et a/  1993a) we have also shown that this pair potential 
leads to rather good results for the thermodynamic properties of liquid lithium at several 
temperatures. For the dynamic structural properties considered in this work, the comparison 
between the theoretical and the MD results shows that the viscoelastic theory gives a 
good qualitative account of the characteristic features of the dynamic smcNre factor and, 
consequently, of the longitudinal dispersion relation for the sound modes. Furthermore, 
comparison with the available inelastic neutron scattering data, i.e. the HWHM of the Rayleigh 
peak and both the position and the HWHM of the Brillouin peaks, shows that, in spite of 
the large error bars associated with these experimental results, at least their wavenumber 
dependence can be qualitatively explained by the present theoretical description. 

Finally we point out that the present results for the dynamic structure of liquid lithium 
share some common features with those of other liquid alkali metals; i.e. the temperature 
dependence of the dispersion curve of liquid lithium is similar to that obtained both 
experimentally and theoretically for expanded liquid rubidium. On the other hand, Balucani 
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Figure 9. Theoretical (fuM tune) and experimental 
(de long 1993) (own circles with error bas) results 
for liquid lithium at T = 470 K (a) HWHM of the 
Rayleigh p e t  of S(q. 0); (b) HWHM of the Brillouin 
peak of S(q, m ) ;  and ( c )  position of the Brillouin peak 
Of S(q, 0). 

et a1 (1992) have shown that the liquid alkali metals (Na, K, Rb and Cs) at their melting 
point exhibit a ‘universal’ scaling behaviour for several dynamic and transport properties, 
so it will be interesting to investigate whether liquid lithium can also be included into that 
behaviour. 

Although the present results for the dynamic stn~cture are rather encouraging, we think 
that further dynamic properties (i.e. velocity autocorrelation function, diffusion coefficient, 
shear viscosity, etc) should also be studied in order to ascertain fully the capability of 
the present theoretical approach. Computations are in progress and will be reported upon 
completion. 

Figure 10. Same as figure 9, although the themetical 
results are for T = 595 K whereas h e  experimental 
ones (de long 1993) are for T = 575 K. 
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